Caribou Snow Amount Tool

- Designed by Dan Cobb (NOAA/NWS/Grand Rapids MI)
- Uses BUFKIT data as input.
- Output includes:
 - Precipitation Type
 - Snow Ratio, Snow Amount
 - Precipitation Totals for Snow, Sleet, Freezing Rain
 - Percent of hydrometeors reaching the ground in the form of liquid, ice, and snow

- See output for explanation
Caribou Snow Amount Tool

• **Snow Amount Algorithm**
 – Creates the snow amount by assessing the sounding in a top-down approach. The analysis looks at vertical velocity, wet-bulb and dry-bulb temperature, and relative humidity to generate a snow ratio. This is done for every model level from hydrometeor creation down to the surface.
 – Documented in an AMS presentation
 • Weather Analysis and Forecasting/17th Conference on Numerical Weather Prediction 2005
 • Recorded online presentation: http://ams.confex.com/ams/WAFNWP34BC/techprogram/paper_94815.htm

• **Precipitation Type Algorithm**
 – Algorithm was designed to use the strengths of the Top-Down Approach (Baumgardt, http://www.crh.noaa.gov/arx/micro/microppe.php), Bourgouin and Ramer algorithms.
 – Traces a hydrometeor vertically toward the surface.
The Output Explained

Snow:Water Ratio, Snow during time step, Run Total Snow Accum

Model precipitation during the time step (QPF), Event Total Precip (TotQPF, resets after 6 dry hours)

Sleet:Water ratio

RH to consider a layer saturated

Site

Percent of hydrometeors reaching the surface as Snow (%S), Ice (%I), and Liquid (%L). Sleet would add to %I, Freezing rain would add to %L.

<table>
<thead>
<tr>
<th>StnID: klse</th>
<th>Model: nam</th>
<th>Run: 20081015/1200</th>
<th>Cloud RH threshold: 85%</th>
<th>Sleet Ratio: 2:1</th>
<th>CarSnowTool Beta 5.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/hour</td>
<td>Fhr</td>
<td>Wind</td>
<td>SfcT</td>
<td>Ptype</td>
<td>SRate</td>
</tr>
<tr>
<td>081015/1300Z</td>
<td>1</td>
<td>18006KT</td>
<td>47.1F</td>
<td>RAIN</td>
<td>0:1</td>
</tr>
<tr>
<td>081015/1400Z</td>
<td>2</td>
<td>20008KT</td>
<td>47.5F</td>
<td>RAIN</td>
<td>0:1</td>
</tr>
<tr>
<td>081015/1500Z</td>
<td>3</td>
<td>30007KT</td>
<td>48.0F</td>
<td>RAIN</td>
<td>0:1</td>
</tr>
<tr>
<td>081015/1600Z</td>
<td>4</td>
<td>31009KT</td>
<td>45.7F</td>
<td>RAIN</td>
<td>0:1</td>
</tr>
</tbody>
</table>

Valid time of the output in YYMMDD/HHHH”Z”. Time is UTC. To get local time, subtract 6h during DST, 5h otherwise.

Model precipitation during time step in the form of sleet or ice pellets, Run Total Precip from Sleet

Model precipitation during time step in the form of freezing rain, Run Total Precip from freezing rain