What is it?

• Characterize the static performance of a sensor
 – Performance of sensor when input is constant or slowly varying.
 – Varying one input, usually in a stepwise fashion, over a range of values while holding other inputs constant.

• Output is observed in steady-state conditions.
 – Input is held constant long enough for output to stabilize.

• Objective 1: Define instrument accuracy

• Objective 2: Develop input-output, or transfer equation.

• Example: calibration of thermocouples in a water bath.

• Dynamic Performance: The performance of a sensor when the input is rapidly varying.
Definitions

• Static Sensitivity: slope of the transfer curve
 – $S_s \equiv \frac{d(\text{raw output})}{d(\text{input})}$
 • Straight line: $S_s = \text{constant}$, linear sensor
 • Otherwise: non-linear sensor

• Range: Measured interval over which a sensor is designed to respond.

• What would you want out of an ideal instrument in terms of S_s and range?
 – Large, constant static sensitivity over the whole range

• A sensor with $S_s = 0$ is a useless sensor.
 – Using a brick for a pressure sensor, for example.
Definitions cont.

• Resolution: Smallest change in the input that produces a detectable change in the output.
 – Higher the sensitivity, the higher the resolution.
 – Resolution is not a function of sensitivity only.
 • Friction and noise can also reduce resolution.

• Hysteresis: Present when the sensor output for a given input depends upon whether the input was increasing or decreasing.

• Stability: An instrument is said to be stable and free from drift if repeated calculations over some period of time produce the same transfer curve.
 – Period can vary from days to years.
Hysteresis Graph
Calibration Procedure

Objective: Develop a transfer equation that can be used to convert the observed output Y_i to an estimate of the known input X_i.

1. Development of transfer plot.
 - Accurate measurement of X_i, the primary input, and Y_i, the primary output, at N points over the design range of the sensor.

2. Development of a transfer equation.
 - Fit a straight line, or curve if necessary, to the data, using the least-squares procedure.
 - Objective: equation that can be used to convert output Y_i to an ESTIMATE of the observed input, X_i.

 - Objective: equation that allows us to determine the observed quantity from the sensor output.
Calibration Equation

• Final result of the calibration procedure.

• Converts sensor readings into the measurable quantity we are interested in.
Bias and Imprecision

• Both can be used to measure the quality of our calibration.

• Bias
 – Systematic error that can be corrected by calibration.

• Imprecision: By convention, typically one or two σ.
 – Uncertainty in a single measurement.

• After calibration:
 – Bias should be zero.
 – Drift could change this.

• Inaccuracy \equiv Bias \pm imprecision