
FIG 1.  Flow diagram of recharge sources for an arid 
climate, including losses due to evapotranspiration (de 
Vries and Simmers, 2002). 
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ABSTRACT 

 
Groundwater recharge is the volume of infiltrated water that reaches the water table and becomes 
part of the groundwater flow system.  Although a required parameter in groundwater models, 
recharge is difficult to measure directly, so it must be estimated indirectly. Indirect methods of 
recharge estimation include empirical methods based on stream discharge and baseflow or 
assuming that areal recharge is spatially and temporally homogeneous and can be represented by a 
mean value that is a percentage of total precipitation. However, the distribution of precipitation is 
inherently heterogeneous, and recharge resulting from it should likewise vary areally.  The goals 
of this study are: 1) to evaluate if NEXRAD rainfall data is useful for estimating spatially variable 
recharge for groundwater models, and 2) to compare the results to those obtained using a common 
empirical method of recharge estimation (Rorabaugh method).  The model output showed that 
Rorabaugh recharge and uniform recharge input best approximated modeled hydraulic head to 
observed values. The Rorabaugh method produced better results than the NEXRAD Stage IV data 
because recharge from Stage IV precipitation fields do not account for geologic effects on 
recharge and hydraulic head distributions while they did have an impact on the Rorabaugh input. 
Spatial variability had only a small impact on the distribution of hydraulic head levels, and did not 
improve model accuracy. 

_______________________________ 
 

1.  Introduction 

Groundwater recharge (R) is the volume of 
infiltrated water that reaches the water table and 
becomes part of the groundwater flow system 
(Anderson and Woessner, 1992). The parameter, R, 
is an important and necessary part of a 
groundwater model.  Groundwater may be 
recharged by infiltration from three sources: 
indirectly from storm runoff that flows into rivers 
and then percolates through the streambed; 
localized infiltration from runoff that collects in 
small depressions and flows downward through 
joints and fractures; and direct infiltration to the 
water table wherever precipitation occurs (de Vries 
and Simmers, 2002;  Figure 1).   This diagram was 
created for a semi-arid or arid environment; humid 
regions rely primarily on vertical infiltration. 

In central Iowa, recharge is difficult to 
estimate. First, the aquifer and aquitard, consisting 
of Wisconsinan-age glacial deposits of the Des 
Moines Lobe contains till, sand and gravel, and 
buried alluvial valleys, which produce a 
heterogeneous material with a wide range of 
hydraulic conductivities (K).  Recharge is related 

to K because it is generally thought that sandy soils 
recharge more water than clayey soils.  Second, 
agricultural tile drains can intercept infiltrated 
water prior to reaching the water table.  Tile 
drainage is a particularly difficult problem for 
understanding recharge because the locations of 
tile drains are poorly documented and the existence 



of many are completely unknown. 

     Many methods have been proposed in the 
literature on how to estimate recharge.  De Vries 
and Simmers (2002) suggest water-balance 
calculations, tracers, application of Darcy’s Law, 
empirically-derived equations, stream baseflow 
and discharge calculations, isotope and chemical 
mass-balance methods, and the use of remotely-
sensed variables (e.g., soil moisture) coupled with 
ground data.  Differing scales of investigation and 
climates may require a variety of methods; thus, a 
standard method has not been developed (Scanlon 
et al., 2002).  For this reason, recharge is often 
estimated as a percentage of precipitation that is 
varied in a groundwater model until a reasonable 
match between calculated and observed hydraulic 
heads (water table elevation above sea level for 
unconfined aquifers) is achieved in groundwater 
flow models. For the humid Midwest region, 
recharge has been shown to range from  10 to 20% 
of total precipitation (Simpkins, 2005). The 
percentage can range from less than 1% in arid 
regions where evapotranspiration dominates to as 
high as 50% where caves and sinkholes provide 
highly efficient channels for precipitation and 
runoff to reach groundwater (de Vries and 
Simmers, 2002). 

     In more recent years, modelers have examined 
radar-derived rainfall totals as a means for 
estimating not only recharge, but also for modeling 
runoff, streamflow, and flooding potential 
(Carpenter et al., 2001; Hardigree et al., 2003; Di 
Luzio and Arnold, 2004; Smith et al., 2004; 
Gourley and Vieux, 2005; Yilmaz et al., 2005).  
Rainfall totals from radar have been examined for 
hydrological use for several decades, but were 
previously considered to be inadequate due to 
errors in rainfall detection (Seo, 1998).  Rainfall 
totals derived from radar data alone (from the Z-R 
power relationship) may be erroneous because of 
factors affecting reflectivity values. These include 
bright band enhancement in stratiform regions, 
beam widening/lengthening with range, 
underestimation beyond the melting layer, 
calibration problems, overshooting of low-topped 
features at long ranges, false precipitation (e.g., 
convective outflow, ground clutter, etc.), 
anomalous propagation of the beam, variability of 
the Z-R relationship, and underestimation resulting 
from the data only being sampled every five 

minutes rather than continuously (Zawadski, 1975; 
Fabry et al., 1992; Kitchen and Jackson, 1993; 
Hunter, 1996; Smith et al., 1996; Hardegree et al., 
2003).  However, advancements have been made 
over the past 20 years to improve the accuracy of 
radar rainfall estimates. One such advancement 
was to use rain gages to adjust the radar-derived 
totals toward more accurate values by scaling them 
up or down to the gage data nearby. This 
“multisensor precipitation estimator” (MPE) 
created by the National Weather Service is known 
as Stage III and is a 4 km resolution, gridded 
dataset generated for each radar site in the WSR-
88D network by the local River Forecast Centers. 
By 2002, the centers had begun to mosaic all the 
MPE data together into a national composite 
known as Stage IV. Stage IV utilized various 
averaging protocols to yield the best data available 
for locations at the edge of the radar range where 
errors were highest in the original Stage III output, 
improving overall accuracy of the data. Further 
quality control checks were also put in place, 
including adjustments to account for many of the 
sources of error mentioned previously.  Some 
argue that radar-derived rainfall totals are still not 
accurate enough for hydrological prediction and 
modeling (Hardegree et al., 2003), but its use is 
nevertheless becoming more widespread within the 
literature.  

     This study acts as to further test the potential of 
using NEXRAD in hydrological modeling, 
specifically groundwater modeling.  The goals of 
this study are: 1) to evaluate if NEXRAD rainfall 
data is useful for estimating spatially varying 
recharge for groundwater models, and 2) to 
compare those results with ones from an empirical 
model of recharge estimation (the Rorabaugh 
method). 

 

2.  Models 

a. GFLOW 

GFLOW is a steady-state, single-layer, analytic 
element groundwater flow model that can be used 
to simulate flow in confined or unconfined aquifers.  
The model solves flow equations across the model 
domain, so that unique solutions for hydraulic head 
can be obtained at any point.  It does this by using 



FIG 2.  Dupuit-Forchheimer flow for an unconfined 
aquifer where q is discharge, h is aquifer thickness
(depth of water from bottom of aquifer), and Φ is 
hydraulic head (Haitjema, 1995). 

FIG 3.  Conceptualized diagram of the continuity 
equation including recharge (N) (Haitjema, 1995). 

stream segments as line sinks or line sources of 
water and then using the Principle of Superposition 
(of linear differential equations) to solve for flow 
in the aquifer.  This is in contrast to grid models 
that use finite difference methods, for example, to 
solve for hydraulic head at the center of a grid cell. 
The model incorporates the Dupuit-Forchheimer 
assumptions where hydraulic head gradients are 
constant with depth and only vary horizontally, 
resulting in primarily horizontal flow. Figure 2 
illustrates the simplifications of Dupuit-
Forchheimer flow.  

Dupuit-Forchheimer assumptions reduce 
groundwater flow to a 2-dimensional plane that 
does not consider any component of vertical flow. 
Recharge is by definition a vertical flow into the 
aquifer, so in order to incorporate it into a Dupuit-
Forchheimer model, it must be included in the 
continuity equation as a constant (Equation 1 and 
Figure 3) and combined with Darcy’s Law to 
develop a form of Poisson’s equation (Equation 2): 
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where Q is discharge in units of volume per time, 
R is recharge in depth per time, T is transmissivity 
(the product of hydraulic conductivity K and 
aquifer thickness), and h is hydraulic head 
(Haitjema, 1995).    

Recharge is entered into the GFLOW model 
generally as a constant value in L/T units (ft/day) 
and applied over an area.  However, it allows for 
spatial variability in the form of “added recharge 

rates,” which are zones of extra recharge that are 
then added to the default value (the user specifies 
where these areas are within the domain by 
drawing polygons where higher recharge would 
occur). Haitjema (1995) advised that the uniform 
default recharge should be used without any 
inhomogeneity for simplicity, which is equivalent 
to rainfall occurring at the same rate everywhere in 
the domain.  The ability to introduce 
inhomogeneities was not originally put in place to 
reflect spatially varying rainfall, however. The 
overview of the theory behind the model by 
Haitjema (1995) showed that inhomogeneities 
were only placed where aquifer properties changed 
(e.g., placing more recharge in sandy alluvial 
valleys where infiltration occurs more readily and 
in higher amounts). 

Using the K and R values, the groundwater 
model solves a series of simultaneous equations to 
simulate the hydraulic head observed from field 
data.  Because any ratio of R/T can provides a 
solution to the equation, R has traditionally been 
used as a tuning factor to calibrate observed vs. 
modeled hydraulic head values. 

 

b. RORA 

RORA is a USGS FORTRAN program that 
calculates groundwater recharge in a basin based 
upon USGS gaging station streamflow data. The 
program, named for the Rorabaugh method 
(Rorabaugh, 1964), looks within these data for 
periods of continuous streamflow recession on 
hydrographs and calculates an average baseflow 
level for the stream at that location (Rutledge, 
1998). To minimize any error resulting from tile 
drainage, RORA uses wintertime data, which is 



considered to be the baseflow value.  RORA then 
uses an empirical equation developed by 
Rorabaugh (1964) that estimates recharge to be 
about one-half the amount of discharge (any 
volume of water in the streamflow exceeding the 
calculated baseflow) and averages that volume 
across the area of the drainage basin to arrive at a 
depth of water that infiltrates to groundwater, as in 
the equation  
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where R is recharge in L3 (later divided by 
watershed area), Q1 is groundwater discharge 
before a rainfall event (L3/T), Q2 is groundwater 
discharge after a rainfall event (L3/T), and K is a 
recession index constant determined from the 
hydrograph’s master recession curve (MRC). 

The Rorabaugh method makes several 
assumptions in its calculation of recharge. 
Because all analysis is based on stream 
discharge at gaging stations, those stations 
must be located such that they intercept all 
water that goes into the watershed; thus, the 
model may perform poorly in low-relief 
regions. The model may not accurately 
represent processes in drainage basins of less 
than 1 km2 or greater than 2000 km2. Finally, 
the model was designed to calculate average 
recharge based on normal streamflow, so 
several years of continuous streamflow data 
are needed to approximate mean conditions 
(Rutledge, 1998). 
 
3.  Methods and Analysis 

a.  The GFLOW Domain 

The watershed selected for this study was the 
South Fork Iowa River watershed (HUC-08 
05451210) in north-central Iowa.  GFLOW 
requires the specification of a near-field and far-
field within a fixed domain, so a domain was 
chosen with South Fork in the center and 
surrounding watersheds acting as the far-field or 
boundary conditions (Figure 4).   

 
b. NEXRAD Recharge Input 

Stage IV precipitation data were available as 
GIS shapefiles of daily rainfall totals from the 
Iowa Environmental Mesonet. GFLOW runs on an 
annual time step, so the rainfall data needed to be 
compiled into yearly totals.  The observed 
hydraulic head measurements that the model was 
tested against had only been available since August 
2005, so it was necessary to select years of rainfall 
that were climatologically similar to what 2005 has 
been up to the time of this study. Instead of relying 
on just one year, three separate years of data (2002, 
2003, and 2004) were used to reflect what impact 
slight variances in rainfall distribution had on the 
GFLOW output.  

The NEXRAD data for the three years were 
then checked against 15-20 available rain gages 
from three networks (ASOS, NWS COOP, and 
USDA ARS) within the GFLOW domain. Gages 
were thrown out from the sample if they were 
missing more than an inch worth of rainfall 
observations during the year. The missing amount 
was determined by averaging all other available 
data for the month and totaling those averages for 
every missing month (the idea being that missing 
data in January or December will not significantly 
affect the yearly total while missing data in June or 
July likely will).  In order to compare gages to 
radar rainfall, the gages had to be combined into 
spatial averages to put the two datasets on 
comparable scales. Rain gages and NEXRAD 
rainfall are sampled both at different time intervals 
and spatial scales, so they cannot be adequately 
compared unless the totals are integrated over time 
and averaged out to similar scales (Zawadzki, 
1975). Spatial averaging of the rain gage data was 
accomplished through the Theissen Polygon 

FIG 4.  Illustration of the South Fork Iowa River 
Watershed within the designated GFLOW domain. 



FIG 6.  Spatial distributions by quantile separation of recharge within the GFLOW domain based on Stage IV 
precipitation. Lighter regions correspond to lower amounts of recharge and darker regions correspond to higher 
amounts. 

method (described by Ward and Trimble, 2004).  
The mean rainfall of rain gage data was compared 
to the mean Stage IV rainfall over the domain to 
test the difference (Table 1). 

 
TABLE 1.  Comparison of Stage IV and rain gage annual 
rainfall totals for 2002, 2003, and 2004. 
 

Year Type Rainfall Stage IV - 
Gages 

2002 Stage IV: 
Gages: 

28.51 in 
30.04 in -1.53 in 

2003 Stage IV: 
Gages: 

26.49 in 
28.32 in -1.83 in 

2004 Stage IV: 
Gages: 

28.55 in 
34.47 in -5.92 in 

 
As mentioned before, a good starting point for 

estimating groundwater recharge in Iowa is that it 
is between 10% and 20% of total precipitation.  In 
order to encompass this entire range in the 
GFLOW model, two GIS shapefiles were created 
showing 10% and 20% of the annual Stage IV 
totals for each of the three years considering that a 
reasonable output of hydraulic head in GFLOW 
would lie somewhere between those two extremes. 
Figure 5 shows the distribution of rainfall amounts 
for all Stage IV gridpoints contained within the 
domain for the three years of study (with 20% 
recharge calculated), and Figure 6 shows a spatial 
representation within the domain.  

Since the user is required to manually input 

FIG 5.  Distributions of Stage IV 20% recharge, 
separated into five segments: (1) Min to 20th Quantile; 
(2) 20th to 40th Quantile; (3) 40th to 60th Quantile; (4) 60th

to 80th Quantile; and (5) 80th Quantile to Max. Quantile 
ranges were averaged to determine GFLOW input. 
 



FIG 7.  RORA recharge input for the GFLOW model, 
separated into six distinct areas corresponding to 
USGS gaging stations. 

the recharge inhomogeneities into the GFLOW 
model, the rainfall distribution was filtered by 
statistical quantiles to avoid the tedious task of 
designating hundreds of gridpoint values 
separately. Means of each quantile were used as 
model input. Quantiles were used rather than 
standard deviation due to two years having skewed, 
non-normal distributions in the data. 
 
 
c.  RORA Recharge Input 

The RORA model was run for six separate 
USGS streamflow gaging stations that were fed by 
watersheds within the domain. All six stations had 
continuous streamflow data from 1996 to 2004. 
RORA averages a recharge value over entire 
drainage basins; thus, six unique values were 
generated within the domain for the six drainage 
basins covered.  

RORA was intended to be run over long 
periods of time to arrive at average conditions 
within the watersheds (Rutledge, 1998). However, 
it outputs the recharge in yearly totals for every 
year that was included in the record, so the nine 
years from 1996 to 2004 were averaged together to 

create a single, average recharge map for the 
GFLOW domain (Figure 7).  Each of the six 
watershed areas were entered individually as 
inhomogeneities into GFLOW for spatial 
variability. 

 
d.  Uniform Recharge Input 

The mean RORA recharge data was used to 
generate the uniform recharge input.  The single 
number was calculated by averaging all RORA 
drainage basins together for all nine years worth of 
data to best approximate a single, mean condition 
within the domain.  This value was 7.09 inches per 
year (21.4% of mean annual precipitation for the 
region). 
 
 
4.  Results 

Because the uniform recharge was used as the 
control, it was run in GFLOW first to calibrate the 
model’s other parameters to levels that would best 
match the model output head to observed head in 
the near-field watershed.  

FIG 8.  GFLOW analytic elements (stream 
segments), test points (wells for observed head 
measurements), and geological inhomogeneities. 



FIG 9.  Correlation plots of observed hydraulic head vs. modeled hydraulic head for 10% and 20% Stage IV 
recharge scenarios. Mean absolute error (MAE) is listed for each dataset. 

Inhomogeneities were put in place to account 
for isolated areas within the domain where the 
differences between the model output and observed 
head were unusually large relative to surrounding 
test points (Figure 8). The additional 
inhomogeneities were justified based on existing 
geological features that would have an impact on 
groundwater levels and movement, such as alluvial 
material and stratified soil layers of varying 
hydraulic conductivity.  Since GFLOW is a single-
layer model, the multiple layers of soil with 
different K values were averaged into a single K 
that extended through the entire depth of the 
aquifer. 

Once the seven spatially variable recharge 
datasets were run, plots were produced for each 
scenario correlating modeled head to observed 
head with mean absolute errors calculated (Figures 
9 and 10). Mean absolute error is determined by 
averaging the absolute difference between modeled 
and observed head for all data points (Anderson 
and Woessner, 1992).  

The RORA and uniform recharge inputs 
resulted in the lowest or best mean absolute errors, 
respectively, followed by the three 20% recharge 
distributions from NEXRAD. The 10% 
distributions led to greatly underestimated head 
levels throughout the domain compared to the 20%   

 

 

 

 

 

 

 

 

FIG 10.  Correlation plots of observed hydraulic 
head vs. modeled hydraulic head for uniform (a) 
and RORA (b) scenarios. Mean absolute error 
(MAE) is listed for each dataset. 



recharge (Figure 9).  This is reflected in the  
correlation plots since nearly all data points fall 
below the fit line, indicating a tendency for 
observed head to be greater than modeled head 

(Figure 9). 

 
5.  Conclusions 

Spatially variable recharge only improves the 
modeling of hydraulic head in GFLOW if a) the 
recharge itself is estimated accurately, and b) 
geologic factors are considered. The Stage IV 
recharge performed poorly because it failed both of 
those conditions. If the rainfall data itself is 
underestimating precipitation, then the recharge 
will also be too low.  Stage IV rainfall estimates 
were calculated to be from 5% (2002) and 6% 
(2003) to 20% (2004) lower than local rain gage 
measurements, and the mean absolute errors 
generated for hydraulic head in GFLOW seemed to 
also reflect that degree of error from year to year 
(2002 and 2003 performed similarly while 2004 
was worst). Also, precipitation data alone estimates 
recharge without any consideration for geologic 
heterogeneities and features that have a large 
impact on where recharge occurs. Therefore, 
precipitation cannot be used to estimate recharge 
without considering varying hydraulic 
conductivities within the aquifer.  The approximate 
residence time of a water volume from infiltration 
to stream discharge should also be taken into 
account when using precipitation data for recharge 
estimation. If the residence time is a year, for 
example, spatial rainfall distribution from 2002 
will have little or no relevance to head 
measurements taken in 2005.  

The RORA and uniform recharge scenarios 
performed best in GFLOW for a few reasons. First, 
they likely contributed more accurate recharge 
amounts because they were calculated with some 
consideration for geologic factors. Baseflow in a 
stream comes from groundwater, so the recharge 
amounts are based on water that had directly 
interacted with the geologic variability in the 
aquifer.  Thus, although RORA did not directly 
consider stratified soil units of differing hydraulic 
conductivity, it was working with data that was 
directly affected by it. Also, there is less of a 
short-term time dependence in the RORA recharge 
because it approximates mean conditions rather 
than changes in recharge on a year-to-year basis. 
There was some concern that since RORA 
calculations are based on streamflow they would 
be affected by tile drain contributions to the 

FIG 11.  GFLOW modeled hydraulic head contour plot 
for (a) uniform recharge, (b) RORA recharge, and (c) 
2002 Stage IV 20% recharge. The South Fork watershed 
is outlined in red.  



streams. This may be occurring on some level, but 
the degree of contribution is beyond the scope of 
this study. 

Even if the earlier Stage IV data did not 
adequately reflect current water table levels, they 
did have the benefit of demonstrating how much 
spatial variability affects modeled hydraulic head, 
however, when compared from year to year. 
Recharge from 2002 and 2003 were useful for this 
purpose because the magnitudes were comparable 
while the distributions were very different.  
Comparing the two years did not indicate that  
spatial variability improved the modeled head, 
however. The mean absolute errors were equal for 
the correlations, and the plotted data points showed 
very little relative change. Even comparing all 
eight spatial recharge scenarios show only minor 
adjustments in the differences between modeled 
and observed head for each test point, but variation 
does exist regarding distribution of head over the 
domain (Figure 11). Therefore, spatial variability 
of recharge does have an affect on modeled 
hydraulic head, but it does not seem to 
significantly improve the overall accuracy of it. 
The magnitude of recharge tends to have a greater 
influence in matching model output to observed 
values. 

Rainfall estimates from weather radar have 
improved over the last 20 or 30 years, but further 
improvements in accuracy still need to be made to 
make it a useful hydrologic tool. A possible next 
step toward exploring the use of the Stage IV 
precipitation data in groundwater modeling could 
be creating composite recharge maps that 
incorporate both rainfall data and area soil 
properties into single distributions. This would 
account for not only the spatial variability of 
rainfall, but also the geologic variability. 
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