Introduction
The purpose of this research was to calculate wind speed trends across the state of Iowa. With over 15% of Iowa’s electricity generated by wind energy (AWEA 2011), understanding changes in wind speed is very important. We used Automated Surface Observing Station (ASOS) data taken from the Iowa Environmental Mesonet (IEM) to create graphs of wind speed trends for the following cities: Omaha, Des Moines, Dubuque, Mason City, Sioux City, and Burlington. We used FORTRAN programs to create annual, seasonal, and diurnal averages of wind speed at the six locations. Trends in other variables like temperature and precipitation have been reported for stations across Iowa (ICCIC 2011) over the last thirty to fifty years. Our poster will report our findings for changes of wind speed across Iowa for these time periods.

Data and Methodology
Wind speed measurement data was compiled from Automated Surface Observing Station (ASOS) data taken from the Iowa Environmental Mesonet (IEM) to create graphs of wind speed trends for the following cities: Omaha, Des Moines, Dubuque, Mason City, Sioux City, and Burlington. This data was processed using FORTRAN programs, and the output was used to create annual, seasonal, and statistical graphs. The graphs have a 70 year time period, allowing us to have a visual of past and present changes to wind over Iowa. For the annual trends, we used the full available time frame. For the seasonal trends, we divided each year’s 12 month period with Spring being months 3-5, Summer 6-8, Fall 9-11, and Winter 12-2 and averaged over the full available time frame. We also graphed wind roses for the cities that show the percentages of winds from each direction with bins every 30 degrees. The radar graphs were compared to one another by having a past and a present 30 year average of wind direction, from 1951-1980 and 1981-2010, to see if any changes in wind direction have occurred.

Conclusions
- Overall wind speed has decreased by about 1 m/s through the time of gathered data, which has important implications for Iowa’s wind energy.
- The highest wind speeds are found in the northwest part of the state and the lowest in the southeast part of the state, with the standard deviation similar across all cities.
- The seasons don’t differ much in the magnitude of change, but the decrease in wind speed is again consistent.
- Wind direction has been changing, such that the average from past has shifted clockwise by about 30 degrees to the present.

Acknowledgement
I would like to thank the Speed/HMM program for the research experience this summer. I also want to thank Dr. Table and Mentor Shannon Patton Graduate Student for all the support and help they provided throughout this research.

References