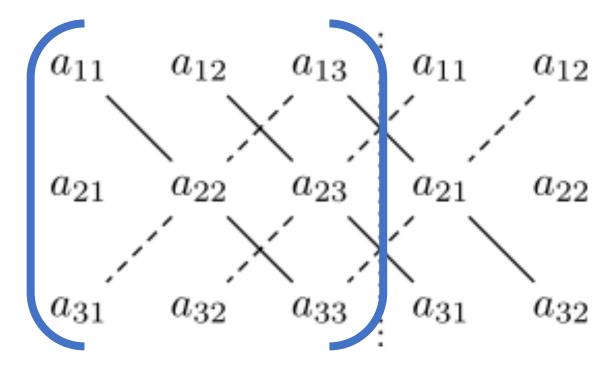
## Linear System of Equations

Consider three equations, linear in the unknowns F, G, H:


$$a21 F + a22 G + a23 H = 0$$

$$a31 F + a32 G + a33 H = 0$$

Can we have a non-trivial solution?

(A trivial solution is F=G=H=0 – not usually of interest.)

## Determinant



A non-trivial solution requires determinant = 0, or (a11)(a22)(a33) + (a12)(a23)(a31) + (a13)(a21)(a32) - (a13)(a22)(a31) - (a11)(a23)(a32) - (a12)(a21)(a33) = 0

## From Thompson (1961)

|                          | $oldsymbol{v}'$            | $\partial h'/\partial x$ | $\partial u'/{ m d} x$ |
|--------------------------|----------------------------|--------------------------|------------------------|
| Vorticity equation       | $\beta - k^2(\bar{u} - c)$ | 0                        | f                      |
| u-momentum equation      | - f                        | g                        | $(\bar{u}-c)$          |
| Mass continuity equation | - f $\overline{u}$ /g      | $(\bar{u}-c)$            | $ar{h}$                |

Thus, to have a non-trivial solution for c, determinant =  $0 \rightarrow$ 

$$[\beta - k^2(\bar{u} - c)][g\bar{h} - (\bar{u} - c)^2] - f^2[(\bar{u} - c) - \bar{u}] = 0$$