1. Isothermal Sound Waves - Part 1

The first time someone tried to derive the behavior of sound waves, it was assumed that they behave isothermally, rather than adiabatically. Thus, we would use $\mathrm{dT} / \mathrm{dt}=0$, rather than $\mathrm{d} \theta / \mathrm{dt}=0$. Making this change, we would arrive at

$$
\begin{align*}
& \rho \frac{\partial u}{\partial t}+\rho u \frac{\partial u}{\partial x}+\frac{\partial p}{\partial x}=0 \tag{1a,b}\\
& \frac{\partial p}{\partial t}+u \frac{\partial p}{\partial x}+p \frac{\partial u}{\partial x}=0
\end{align*}
$$

(a) Show that an acceptable basic state is $u=\bar{u}, p=\bar{p}, \rho=\bar{\rho}$, where all three fields are constants.
(b) Assume the isothermal sound waves are given by perturbations about this basic state: $u=\bar{u}+u^{\prime}, p=\bar{p}+p^{\prime}, \rho=\bar{\rho}+\rho^{\prime}$. Substitute these forms for u, p, and ρ into ($1 \mathrm{a}, \mathrm{b}$) and obtain the corresponding two linearized equations for the perturbation fields.
(c) If we eliminate variables in the two linearized equations to get a single equation in p^{\prime}, we then have

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+\bar{u} \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+\bar{u} \frac{\partial}{\partial x}\right) p^{\prime}-\frac{\bar{p}}{\bar{\rho}} \frac{\partial^{2} p^{\prime}}{\partial x^{2}}=0 \tag{2}
\end{equation*}
$$

As mentioned in class, the form $\left(\frac{\partial}{\partial t}+\bar{u} \frac{\partial}{\partial x}\right)$ is a differential operator. The derivatives in it operate on whatever is to the right of it. When we see the form twice in a row, as in (2), it means we apply the rightmost $\left(\frac{\partial}{\partial t}+\bar{u} \frac{\partial}{\partial x}\right)$ to p^{\prime}, and then do it again with the next $\left(\frac{\partial}{\partial t}+\bar{u} \frac{\partial}{\partial x}\right)$. This is analogous to considering $\frac{\partial^{2} p^{\prime}}{\partial x^{2}}$ as $\left(\frac{\partial}{\partial x}\right)\left(\frac{\partial p^{\prime}}{\partial x}\right)$, where first we compute $\left(\frac{\partial p^{\prime}}{\partial x}\right)$, and then take $\left(\frac{\partial}{\partial x}\right)$ of that result.

With that in mind, assume a wave solution, $p^{\prime}=A \exp \{i k(x-c t)\}$, and derive the relationship for phase speed c in terms of \bar{u}, \bar{p}, and $\bar{\rho}$.

