
Problems 5       Due: 28 October 2019 
 
 
1. Isothermal Sound Waves - Part 1 
 The first time someone tried to derive the behavior of sound waves, it was 
assumed that they behave isothermally, rather than adiabatically.  Thus, we would use 
dT/dt = 0, rather than dq/dt = 0.  Making this change, we would arrive at 

       (1a,b) 

 
(a) Show that an acceptable basic state is , where all three fields are 
constants. 
 
(b) Assume the isothermal sound waves are given by perturbations about this basic state:  

.  Substitute these forms for u, p, and r into (1a,b) and 
obtain the corresponding two linearized equations for the perturbation fields. 
 
(c) If we eliminate variables in the two linearized equations to get a single equation in 
 , we then have 
 

     (2) 

 

As mentioned in class, the form  is a differential operator.  The 

derivatives in it operate on whatever is to the right of it.  When we see the form 

twice in a row, as in (2), it means we apply the rightmost to , and 

then do it again with the next  .  This is analogous to considering 

 as , where first we compute , and then take  of that 

result. 
 
 
With that in mind, assume a wave solution, , and derive the 
relationship for phase speed c in terms of .   
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! p = A exp{ik(x − ct )}
u , p , and ρ 


