
Exam – Physics of Climate 
 

Time allowed:  120 minutes     
You are allowed to use all online class materials, as well as graded problem sets and computer 
(EdGCM) labs. 
 
1.  [50 points] You are the science officer on the starship Spes Bona, orbiting a newly discovered 
planet, Ciudad del Cabo. You are using your radiation sensors to determine properties of the 
planet’s climate.  The atmosphere of Ciudad del Cabo is cloud-free, controlled by radiative 
fluxes (no dynamic heat transport) and overlies a surface consisting only of land (no oceans). 
 
All parts of this problem except part (e) can be solved using Lecture 1.   
(Side note:  Spes Bona  = Good Hope [Latin], the motto of the University of Cape Town 
and, of course, reference to the Cape of Good Hope and its historical significance to 
European explorers.  Ciudad del Cabo = City of the Cape [Spanish], i.e., Cape Town.) 
 
(a) Your sensors measure the shortwave radiation flux SV (the “stellar constant”) coming from 
the star of Ciudad del Cabo.  It has a value of SV = 1200 W-m-2.  While orbiting the planet, they 
also measure its upward longwave flux to space.  It has a global average value 

! 

IV = 280W"m"2.  
What is the planetary albedo, 

! 

"  ? 
 
Use  

Then 

 
So albedo = 6.7%. 
 
(b) What is 

! 

T RAD  the radiative temperature of the planet? 
 
TRAD is the temperature the planet would have if it radiated like a black body with I = 280 
W-m=2.  Use 

! 

TRAD = I /"( )1/ 4  = (280 W-m-2/5.67.10-8 deg-4-W-m-2) = 265 K. 
 
(c) From probes sent to the surface, you determine that the global-average surface temperature is 

! 

T s = 400 K .  What is the effective emissivity of Ciudad del Cabo? [Be careful with your units!] 
 
Now use 

! 

I = "# Ts( )4  to link outgoing radiation with surface temperature.  That is, assume 
the planet radiates like an equivalent black body at the temperature of the surface.  
Then, 

! 

"= I /# Ts( )4  = 280 W-m-2 / { 5.67.10-8 deg-4-W-m-2 x (400 deg)4 } = 0.19. 
 
(d) Because the surface temperature is above the boiling point of water, the habitation team 
proposes sprinkling the surface with a highly reflection medium, thereby increasing the planetary 
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I = 1
4 (1"#)S
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" = 1# 4I /S



albedo.  Assuming the effective emissivity does not change, what must be the new planetary 
albedo 

! 

"  to have a surface temperature of 300 K? 
 
Incoming radiation =

! 

1" # ( ) S
4

  Outgoing radiation = 

! 

"# Ts( )4  
We know all parameters except albedo, so using the balance requirement:  
 outgoing radiation =  incoming radiation 
We get 

! 

" = 1# $%T s
4 4

S
 = 70.9% 

 
(e) How would you set up a set of EdGCM simulations to test your result in part (d)? 
 
We would first have to set up a planet that had an albedo of 6.7% so that incoming 
radiation due to a stellar constant of 1200 W-m-2, the outgoing radiation would be 280 
W-m-2.  Then we would have to alter the atmosphere so that surface temperature 
originally was 400 K, perhaps by changing the mass of the atmosphere (surface 
pressure) until this temperature occurred, or perhaps by altering the composition of 
greenhouse gases.  We would have to simulate several years to get to a statistical 
equilibrium, and then several years more to be sure we had an average surface 
temperature of 400 K. 
 Once we had that, we could change the surface albedo to 70.9% and run the 
model to its new equilibrium, checking that the temperature did drop eventually to an 
average value of 300 K. 
 
2.  [30 points] Consider the zero-dimensional global energy balance model we studied. 
 
All parts of this problem can be solved using Lecture 5, though of course knowing 
material from the previous and later lectures helps.   
 
(a) For the stable solution that approximates our present climate, how does global average 
temperature change with solar constant using the Modified Sellers parameterization?  Present 
this as a table of S and 

! 

T s  values or a simple plot of 

! 

T s  vs. S.  [Be careful to determine the 
lowest allowable 

! 

T s  and hence lowest allowable S for this stable branch of the possible 
solutions.] 
 
We have 

with 

where the parameters with overbars b = 0.30 and d = 0.20.  Also, 
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I W /m2( ) = 217 +1.59Ts ˚C( )



 
 For the stable solution of this model that approximates our present climate, we 
are in the regime where average Ts > 10˚C, so albedo is then a simple constant, b = 
0.30.  We can then easily solve for Ts(S): 

 
The lowest allowable value of Ts is the lower limit for this part of the albedo range with 
fixed albedo, of Ts = 10˚C.  (If Ts falls below that, then the albedo has to have values 
given by the other temperature ranges in the modified Sellers parameterization.)  
Knowing this, we can then compute average surface temperature as a function of S: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the figure shows Ts(S) and not S(Ts).  This is not a trivial distinction.  The latter 
implies that changes in Ts cause S to vary, which is not physical.  The former implies 
that changes in S cause Ts to vary, which does make physical sense.  This is why this 
figure has Ts, the dependent variable, on the y-axis and S, the independent variable, on 
the x axis.  
 
(b) Suppose S drops below the lower limit on it in part (a), what then becomes the stable climate 
for the earth? 
 
The lower limit for S in part (a) is about 1330 W-m-2.  If S should decrease below this 
limit, then Ts decreases and puts us in the range where albedo varies with temperature.  
However, we have seen that this is an unstable regime, so temperature will continue to 
drop, and albedo will increase until the planet falls into the other stable regime, where 
albedo is now = b+d = 0.5.  This gives 
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Note that now, for S ≈ 1330 W-m-2, the surface temperature is much colder:  the climate 
jumps down to a new, colder temperature.  There is, in fact, a range of S (~1330 – 1365  
W-m-2) where there are two possible solutions:  a very cold planet, with more snow/ice 
cover, and a warmer planet, approximately like ours.  Which one the climate will end at 
depends on whether it is perturbed toward the ice-free (low albedo) or ice-covered (high 
albedo) state. 
 
 
3.  [20 points] Let’s go back to Mars and planetary engineering.  Our final estimate of the 
longwave optical depth needed to give a surface temperature of 0˚C was τ ≈ 8.  The longwave 
optical depth for the earth’s atmosphere is about τ ≈ 4, and this is due primarily to water vapor.  
Let’s suppose we need τ ≈ 8 for Mars, and that we expect water vapor to give this.   How much 
mass of water vapor will we need and is that water present on Mars? 
 We can evaluate these questions with a few computations you are about to do: 
(i) estimate mass of earth’s atmosphere 
(ii) estimate mass of water in the Martian North Pole ice cap 
 
(a) The average density of water at the earth’s surface is approximately ρwo ≈ 1.2.10-3 kg/m3. 
Water vapor varies with height approximately as ρw(z) ≈ ρwo exp{-z/hw}, where hw ≈ 2 km. 
Thus, the average column mass of water vapor (units:  mass/area) is  

   

! 

PW = "w(z)dz
0

#

$  

 What is the mass of water vapor for the entire area of the earth?  Presumably we would 
need to double this to raise the longwave optical depth for earth from τ ≈ 4 to τ ≈ 8 (as an 
approximation). 
 
We get the mass of water vapor for the entire planet by integrating the PW equation, 
which gives the mass per unit area, and then multiplying by the surface area of the 
earth.  Thus, 
 PW = ρwohw  , 
using the integration formula below.  The surface area of the earth is 4π(Rearth)2.  Thus 
total mass = PW x area = (ρwohw){ 4π(Rearth)2} = 1.2.1015 kg. 
   



(b) The Martian North Pole has the planet’s largest ice cap.  One estimate from a Martian orbiter 
(http://ltpwww.gsfc.nasa.gov/tharsis/agu_f98.html Note: site no longer exists) is that the ice has a 
volume of 1.2.106 km3.  The density of ice is ~ 0.92.103 kg/m3.   
 What is the mass of Martian North Pole ice? 
This is simply MMars = 1.2.106 km3 x (1000 m/km)3 x 0.92.103 kg/m3 = 1.10.1018 kg. 
 
(c) If the Martian North Pole ice evaporated, how would it compare to the volume of water 
estimated necessary to raise the earth’s longwave optical depth to τ ≈ 8 ?   
 
This is more than enough, according to these computations. 
 
 
(d)  Final point:  the surface area of Mars is about ¼ the surface area of Earth.  What might this 
mean for the volume of water vapor we need to raise the longwave optical depth to τ ≈ 8? 
 
If we assume the scale height for water vapor in our “engineered” Martian atmosphere 
is about the same as for earth (a reasonable assumption given that the temperatures 
would be approximately the same in the lowest km or 2), then for asurface area only ¼ 
that of the earth, we need only ¼ of the mass, about 3.1014 kg, which further make the 
ice cap on Mars more than sufficient as a supplier of water vapor. 
 
Possibly useful numbers and equations 
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" = 5.67 #10$8 W$m$2 $K$4  

! 

" = 3.141592654  e-1 = 0.36787945 
 
Rearth = 6.37.106 m 
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exp "z /H{ }dz
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b

# =H exp "a /H( ) " exp "b /H( ){ }  

 
 


