Semester Project

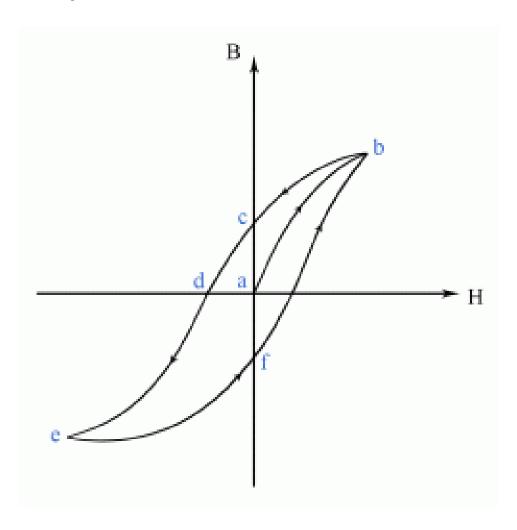
- Goal: Analyze weather data from a meteorological station or sensor, analyze the data, and draw conclusions.
 - Hypothesis based.
 - There are many options here: set up your own station, use an existing station, use or make a sensor/station of your own.
 - Analyze the data and make conclusions: do an advanced analysis and draw conclusions.
- Group project two or three members to a group.

Meteorology 433

Static Calibration/Static Performance Spring 2022

What is it?

- Characterize the static performance of a sensor
 - Performance of sensor when input is constant or slowly varying.
 - Varying one input, usually in a stepwise fashion, over a range of values while holding other inputs constant.
- Output is observed in steady-state conditions.
 - Input is held constant long enough for output to stabilize.
- Objective 1: Define instrument accuracy
- Objective 2: Develop input-output, or transfer equation.
- Dynamic Performance: The performance of a sensor when the input is rapidly varying.

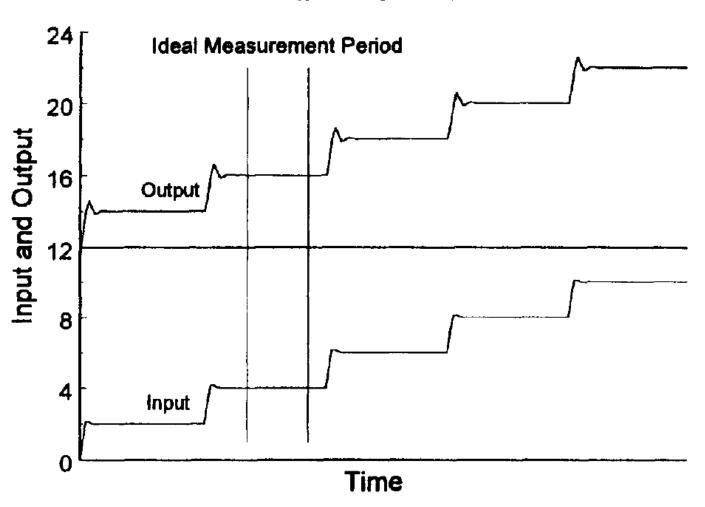

Definitions

- Static Sensitivity: slope of the transfer curve
 - S_s ≡ d(raw output)/ d(input)
 - Straight line: S_s = constant, linear sensor
 - Otherwise: non-linear sensor
- Range: Measured interval over which a sensor is designed to respond.
- What would you want out of an ideal instrument in terms of S_s and range?
 - Large, constant static sensitivity over the whole range and a wide range.
- A sensor with $S_s = 0$ is a useless sensor.
 - Using a brick for a pressure sensor, for example.

Definitions cont.

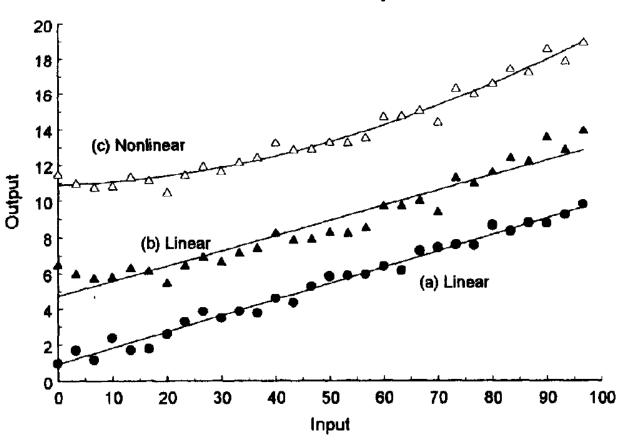
- Resolution: Smallest change in the input that produces a detectable change in the output.
 - Higher the sensitivity, the higher the resolution.
 - Resolution is not a function of sensitivity only.
 - Friction and noise can also reduce resolution.
- Hysteresis: Present when the sensor output for a given input depends upon whether the input was <u>increasing</u> or <u>decreasing</u>.
- Stability: An instrument is said to be stable and free from drift if repeated calculations over some period of time produce the same transfer curve.
 - Period can vary from days to years.

Hysteresis Graph


Calibration Procedure

Objective: Develop a transfer equation that can be used to convert the observed output, Y_i , to an estimate of the known input X_i .

- 1. Development of transfer plot.
 - Accurate measurement of X_i, the primary input, and Y_i, the primary output, at N points over the design range of the sensor.
- 2. Development of a transfer equation.
 - Fit a straight line, or curve if necessary, to the data, using the leastsquares procedure.
 - Objective: equation that can be used to convert output Y_i to an <u>ESTIMATE</u> of the observed input, X_i.
- 3. Development of a calibration equation.
 - Objective: equation that allows us to determine the observed quantity from the sensor output.


Transfer Plot

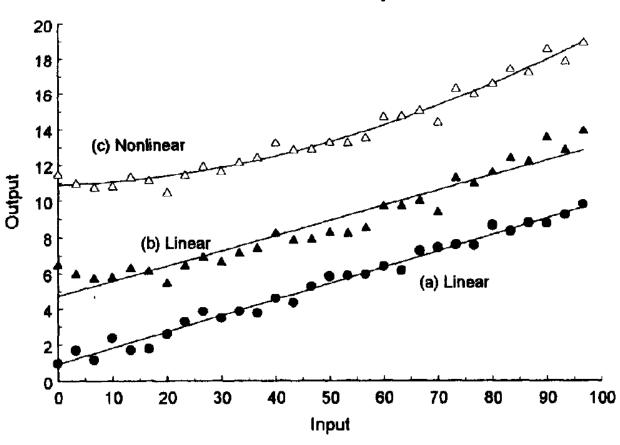
Static Calibration

Transfer Plot

Static Linearity

Transfer Equation

•
$$\hat{\mathbf{Y}}_1 = a_0 + a_1 X_i + a_2 X_i^2 + a_3 X_i^3 + \dots$$


- Y₁ is the output from the sensor for a known input, X_i.
- \hat{Y}_1 is an approximation to Y_1 (Random Errors).
- $-a_0, a_1, a_2, a_3$ are coefficients

$$\bullet \ \hat{Y}_1 = a_0 + a_1 X_i$$

- For a linear sensor
- The coefficients are determined by a least-squares fit to a straight line that minimizes the error function.

Transfer Plot

Static Linearity

Error Function

•
$$E = \sum_{n=1}^{N} (a_0 + a_1 X_{in} - Y_{1n})^2$$

- N = number of data values
- Remember: The first two terms are just the approximation to the output, Y.

When you do this, you get

$$-D = N \sum X_{in}^2 - (\sum X_{in})^2$$

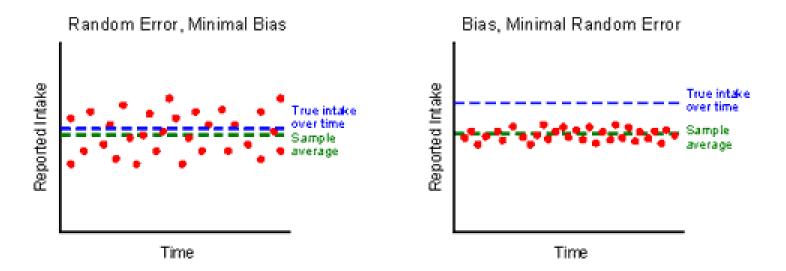
$$-a_0 = (\sum Y_{1n} \sum X_{in}^2 - \sum X_{in} \sum X_{in} Y_{1n})/D$$

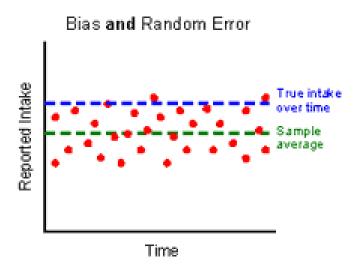
$$-a_1 = (N \sum X_{in} \sum Y_{1n} - \sum X_{in} \sum Y_{1n})/D$$

Calibration Equation

Final result of the calibration procedure.

 Converts sensor readings into the measurable quantity we are interested in.


Calibration Equation


- $X_1 = c_0 + c_1 Y_1 + c_2 Y_1^2 + c_3 Y_1^3 + \dots$
 - For a given output from the sensor, Y_1 , the input was X_1 .
 - For example, Y_1 could be a voltage from the sensor for a temperature, X_1

• $X_1 = c_0 + c_1 Y_1$ - $c_0 = -a_0/a_1$ - $c_1 = 1/a_1$

Bias and Imprecision

- Bias
 - Systematic error that can be corrected by calibration.
 - $\varepsilon = X_{1n} X_{in}$
 - Output from calibration equation to true value.
- Imprecision: By convention, typically one or two standard deviations.
 - Uncertainty in a single measurement.
- The purpose of static calibration is to remove the bias and to numerically define the imprecision.
 - measure the quality of our calibration.
- After calibration:
 - Bias should be zero.
 - Drift could change this.
- Inaccuracy ≡ Bias ± imprecision

