Meteorology 432

Barometry
Spring 2013

Basics Revisited

 Objective: Measure the static pressure exerted by the atmosphere.

 Static Pressure: Force per unit area in the absence of air motion.

 In this case, pressure is just the weight (per unit area) of the column of air above you.

Dynamic Pressure

- Pressure exerted by wind flow.
 - Momentum transfer air particles impinging on a surface of unit area.

- $\Delta P = \frac{1}{2} C \rho V^2$
 - $-\Delta P$ = pressure error from static conditions
 - C = coefficient whose magnitude is close to unity.
 - $-\rho$ = air density
 - -V = wind speed

Direct/Indirect

- Direct measurement of pressure
 - Instruments that balance the force of the atmosphere against something.
 - Liquid column.
 - Spring (aneroid barometer).

- Indirect measurement of pressure
 - Boiling point of liquid exposed to atmospheric pressure.

Direct Measurement

Manometer

- Differential measurement.
- Absolute measurement.
- Measure the difference in height of the two columns.
- Requires two measurements of height.

Mercury barometer

- Column of mercury in a glass tube with a reservoir of mercury at the bottom and is sealed at the top (near vacuum).
- Weight of column is balanced against the force of the atmosphere.
- Height of the column relative to the surface of mercury in the reservoir is determined by the attached scale.

Why Mercury?

- High Density
 - 13534 kg/m^3
 - Allows column to be of reasonable length.
- Low vapor pressure
 - Has little impact on the vacuum at the top.
- Easily purified and is chemically stable
 - Vapor is toxic Extreme care must be used.
- Is liquid between ~ -39 °C to 357 °C.

Sources of Error

- Dynamic wind pressure
 - Can be several hPa.
 - How do you overcome this?
- Density of mercury is a function of temperature.
 - Make temperature correction (C_T).
- Local Gravity must be known correctly.
 - Make gravity correction (C_G).
- Air or water vapor at top of tube (not vacuum).
- Barometer must be kept vertical.
- Mercury must be pure.
- In small tubes, surface tension will cause a meniscus
 - For 5mm tube, ~200 Pa (~0.2% of standard atmosphere).
 - For 13mm tube, ~27 Pa
 - Index Correction (C_I)

Corrections

- Ideal barometer: static pressure as the only input.
- Reality: static pressure, dynamic pressure, and temperature are inputs
 - This results in errors that need to be corrected.
- To convert a raw barometer reading (p₁) to station pressure (p_s), we need to apply an index correction (C_x), temperature correction (C_T), and gravity correction (C_G).

Index Correction (C_x)

 Obtained by comparison with a reference barometer.

 Usually is included on a card that comes with the barometer.

- If no index correction is given, assume is zero.
 - Quote this as being "unknown", and set it equal to zero.

Temperature Correction (C_T)

- Developed from known thermal expansion coefficients for mercury *and* for the scale.
 - Volume change in mercury reservoir.
 - Length change of scale.
- $C_T = -P_1 (\beta \alpha) T$
 - β = volume expansion coefficient of mercury (p. 21).
 - α = linear expansion coefficient of the scale.
 - By introducing this correction, we effectively reduce our pressure measurement to 0°C
- For a brass scale, $C_T = -1.63 \times 10^{-4} P_1 T$.

Gravity Correction (C_G)

- Let the index and temperature corrected pressure be P₂.
 - $P_2 = P_1 + C_x + C_T.$
- If we are at a place with standard gravity ($g_0 = 9.80665$ m/s²), P_2 is final true pressure.
- If g deviates from g_o, we need to make a gravity correction.
 - If you go north, gravity increases.
 - Your weight increases by 0.5% as you go from equator to pole, this is approximately one pound for the average person.
 - If you go up, gravity decreases.

Example 1

A mercury barometer reads: p₁ = 941.23 hPa; the temperature T = 21.2 °C. The index correction is unknown (zero). The latitude is 40.00° and the elevation is 652m. Calculate the station pressure.

Example 2

A mercury barometer reads: p₁ = 940.50 hPa; the temperature T = 25.2 °C. The index correction is unknown (zero). The latitude is 40.00° and the elevation is 552m. Calculate the station pressure.

How accurate do we need to be?

- How accurately must the latitude and elevation be determined?
 - Do we need to measure the exact height of the barometer?
- For an error of 0.05 hPa, how close do we need to be?

Aneroid Barometer

Aneroid: Without fluid.

- Evacuated chamber with a flexible diaphragm that moves in response to applied pressure.
 - Somewhat similar to pressure transducer.
- The restoring force is a spring or may be part of the diaphragm itself.

Calibration Equation

- Consider a simple, evacuated, aneroid chamber with a flat metallic diaphragm on one side
- Calibration equation variables
 - P = Pressure
 - E = modulus of elasticity
 - y = deflection of the diaphragm center (raw output)
 - <u>t = diaphragm thickness</u>
 - R = diaphragm radius
 - v = Poissons ratio: typicall 1/3 for metals.
- Find Static sensitivity
 - Simplify

Static Sensitivity

- Plot diaphragm deflection vs. pressure
 - Transfer plot
 - Non-linear
 - Static sensitivity decreases as pressure increases.
- Deflections are very small, typically on the order of the diaphragm thickness.
- The non-linearity is troublesome, yet aneroid barometers are popular devices.
 - Inexpensive, simple
 - How can this be?

Real Aneroids

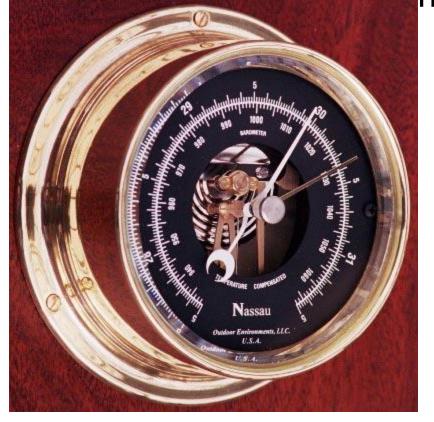
- Corrugated diaphragms.
 - Simple fix that makes the static sensitivity nearly constant.
 - Nearly a linear sensor.
- Two corrugated diaphragms welded together.
 - Space between diaphragms is evacuated.
- Deflection of diaphragm either drives a dial display or provides an electric output.

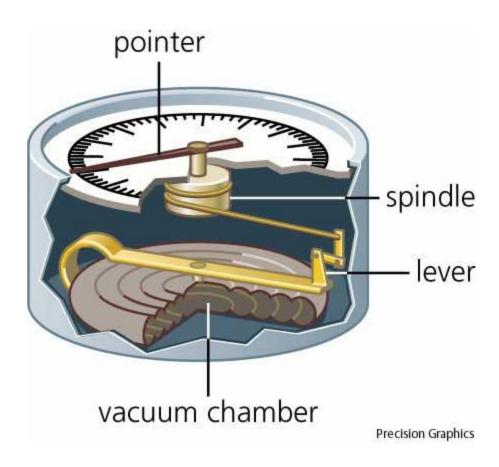
Aneroid Errors

- Exposure errors similar to those in mercury barometers
 - Dynamic pressure
 - Harder to correct than mercury.
- Temperature effects of all sorts.

- Drift due to diaphragm creep.
 - Unpredictable, but periodic checks will account for it.
 - Drift is not a problem in mercury barometers.

Why use them?

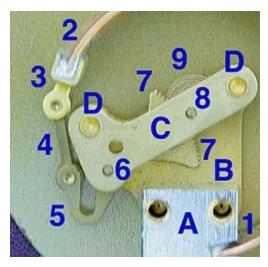

 With all of these errors, why should we use them?


Readily automated.

- Very portable
 - Insensitive to orientation and motion.

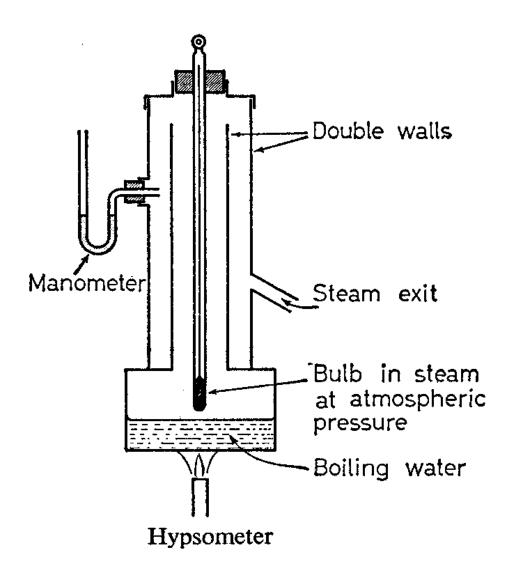
No gravity correction.

Images



Bourdon tube

Indirect Pressure Measurements


- Does not respond directly to the force due to the atmospheric pressure, but responds to some other variable that is a function of pressure.
- For example, the boiling temperature of a liquid depends on the atmospheric pressure.
 - Decreases with decreasing pressure

Hypsometer

Literally, height meter.

 Flask with hypsometric fluid, heated to maintain a continuous boiling.

- Temperature sensor to measure the boiling temperature.
 - Must be positioned carefully to obtain a representative boiling temperature.

Hypsometer - S_s

- Static sensitivity near sea-level is very poor.
 - A large change in pressure produces a small change in the boiling temperature.
 - High performance temperature sensors are required.

Limited range of applications.