Divergence, Vorticity, Vertical Motion

Meteorology 311
Fall 2015
Expression of Winds

• Wind barbs (magnitude and direction)

• Meteorological degrees (magnitude and direction)

• Vector Components

• Taylor expansion of wind (three terms)
 – Divergence, vorticity, deformation
Divergence

• $\delta > 0$: Expansion of a parcel
 – After construction zone

• $\delta < 0$: Compression of a parcel
 – Before construction zone

• Calculation of divergence/convergence is difficult when not on a Cartesian grid.
 – What do we do?
Natural Coordinates

• Rotate axis so X-Axis points along the wind, Y-Axis is 90° to the left.

• \(\hat{s} \) is aligned with wind, \(n \) is positive to the left.

• \(u = |V| \cos \theta_b \), \(v = |V| \sin \theta_b \)

• \(\theta_b \) is angle which you have rotated the coordinate system.
Divergence (Natural Coordinates)

• Terms are usually both large and have opposite sign.

• Hard to tell if there is divergence (convergence) just because there is confluence (diffluence).
Vorticity (Natural Coordinates)

• Spin of a parcel

• Horizontal spin is most important to meteorologists.
 – z component.

• Counterclockwise spin: positive vorticity
• Clockwise spin: negative vorticity
• Cyclonic vorticity: having the same direction of rotation as the Earth.
• Anticyclonic vorticity: Opposite direction.
Why is this important?

• Divergence/Convergence
 – Low level convergence → Upward motion
 • Clouds and precipitation
 • Continuity equation
 – Low level divergence → Downward motion
 • Fair weather

• Vorticity
 – PVA → Upward motion
 • Downstream of a vorticity maximum
 • Clouds and precipitation
 – NVA → Downward motion
 • Fair weather
 – Usually looked at high up in the atmosphere.
Vertical Motion

• Synoptic scale
 – u and $v \sim 10 \text{ m/s}$
 – $w \sim 1 \text{ cm/s}$

• Weather ballons: $\sim 10\%$ error in measuring horizontal winds (1 m/s)
 – Not good enough.
 – Effectively impossible to measure w.

• What do we do?
What do we do?

• Diagnose \(w \) from other relationships.

• If you have \(w \) or \(\omega \) in an equation, you can solve for it.

• Remember \(\omega \)?
 – Think about the sign.

• Five techniques for estimating \(w \) or \(\omega \).
Methods

• Kinematic Method
 – Continuity equation.
 – Most commonly used.

• Adiabatic Method
 – Thermodynamic equation.

• Isentropic Method
 – Isentropic coordinate (adiabatic motion)

• Vorticity Method
 – Vorticity equation.

• Satellite Method
 – Determine cloud-top temperature changes with time.