Chapter 4 – Radiative Transfer

Spring 2024

Radiative Transfer

 Primary method of energy exchange between the Earth and rest of universe.

• Transfers occur between the atmosphere and Earth, and between layers of the atmosphere.

The Spectrum of Radiation

- Electromagnetic Radiation
 - Travels at speed of light (3x10⁸ m/s).
 - Consists of a variety of frequencies and wavelengths.

Quantum Theory

- Electromagnetic radiation is made up of photons, or packets of energy.
- Photon energy = $W = hf = hc/\lambda$
 - λ = wavelength
 - f = frequency
 - c = speed of light.
- Energy is inversely proportional to wavelength.
- Energy is directly proportional to frequency.

Nomenclature

- Radiant flux: Rate of energy transfer by electromagnetic radiation.
 - Units: Energy/time = J/s = W = Watts.
 - Example: Radiant flux from sun = $3.9x10^{26}$ W.
- Irradiance: Radiant flux/Area = E
 - Units: W/m²
 - Example: Irradiance at outermost disk of sun.
- Monochromatic irradiance: $E = E / \lambda$
 - Units: $W/m^2 m = W/m^2 um$.

Diffuse and Direct Radiation

- Diffuse Radiation: Radiation emanating from a source that subtends a finite arc of solid angle.
 - Scattered radiation is an example.
- Parallel Beam Radiation: Emission from a concentrated source.
 - Radiance approaches infinity and the angle subtended by the source approaches zero.
 - Direct beam radiation

Measurement of Radiation

Black and white surface

• Black absorbs radiation, white reflects radiation

 Amount of radiation received and absorbed determines the differences in the rate of increase of temperatures between the two surfaces.

Pyranometer

Blackbody Radiation

- Hypothetical body comprising a sufficient number of molecules absorbing and emitting electromagnetic radiation in all parts of the spectrum so that:
 - All incident radiation is completely absorbed.
 - Maximum possible emission is realized in all wavelength bands, in all directions (isotropic).
- Planck's law: Amount of radiation emitted by a blackbody.
 - Uniquely determined by its temperature.

Wien's Displacement Law

- λ_{max} = 2880 um K/T
- Wavelength of peak emission for a blackbody at temperature T.

- Estimate the temperature of a radiation source from its emission spectrum.
 - If we assume a blackbody source, then knowing the emission spectrum, we can deduce T.

More Blackbody Spectra

Fig. 6.4 Normalized blackbody spectra representative of the sun (left) and earth (right), plotted on a logarithmic wavelength scale. The ordinate is multiplied by wavelength in order to make area under the curves proportional to irradiance. [Adapted from R. M. Goody, "Atmospheric Radiation," Oxford Univ. Press (1964), p. 4.]

Blackbody Spectrum cont.

Fig. 6.4 Normalized blackbody spectra representative of the sun (left) and earth (right), plotted on a logarithmic wavelength scale. The ordinate is multiplied by wavelength in order to make area under the curves proportional to irradiance. [Adapted from R. M. Goody, "Atmospheric Radiation," Oxford Univ. Press (1964), p. 4.]

- Peak for sun is in blue, but asymmetry of spectrum gives more radiation toward yellow side.
- Earth emits @ ~255 K
- Sun concentrated in visible and near infrared, planets and their atmospheres largely confined to infrared.
- Note: Curves barely overlap
 - Treat solar (<u>shortwave</u>) radiation separately from terrestrial (<u>longwave</u>) radiation.

Calculations

• Irradiance at the top of the Earth's atmosphere

Equivalent Blackbody Temperature of Sun

- Equivalent Blackbody Temperature of Earth
 - This calculation assumes the Earth does not have an atmosphere and references the image on the next slide

Absorptivity and Emissivity

- Blackbody radiation is an upper limit to the amount of radiation a real substance may emit at a given temperature.
 - Real world radiation < Blackbody
- At any given wavelength, λ , we can define the Emissivity, $\varepsilon \equiv E_{\lambda} / E_{\lambda}^*$
 - Emissivity is a measure of how strongly a body radiates at that wavelength.
 - $\varepsilon_{blackbody} \equiv 1$ at all wavelengths.
 - $0 < \epsilon_{\text{real substance}} < 1$
- "Grey body" emissivity: $\varepsilon \equiv E / E^* = E/\sigma T^4$ and $E_{grey} = \varepsilon \sigma T^4$
 - "Grey" comes from the neglect λ of wavelength dependence of the emissivity.
 - Most real substances behave as grey bodies and have an emissivity that is different from 1.
- Absorptivity, $a_{\lambda} \equiv irradiance$ absorbed / irradiance incident
 - "grey body" absorptivity = a
 - $a_{blackbody} = 1$

Kirchhoff's law

• Kirchhoff's law: Materials that are strong absorbers at a particular λ are also strong emitters at that λ .

•
$$a_{\lambda} = \epsilon_{\lambda}$$

• Weak absorbers = weak emitters

Applies to gases like our atmosphere.

Reflectivity and transmissivity

- What happens to the part not absorbed? It is reflected.
- E_{λ} (incident) = E_{λ} (absorbed) + E_{λ} (reflected)
- Dividing by E $_{\lambda}$ (incident) yields:
- E_{λ} (incident)/ E_{λ} (incident) = E_{λ} (absorbed)/ E_{λ} (incident) + E_{λ} (reflected)/ E_{λ} (incident)
- 1 = E_{λ} (absorbed)/ E_{λ} (incident) + E_{λ} (reflected)/ E_{λ} (incident)
- $1 = a_{\lambda} + r_{\lambda}$
- Reflectivity, $r_{\lambda} = E_{\lambda}$ (reflected)/ E_{λ} (incident)
 - Large r_{λ} = small a_{λ} and vice versa.
- More generally, for non-opaque media, some of the incident radiation is transmitted.
- Transmissivity, $\tau_{\lambda} = E_{\lambda}$ (transmitted)/ E_{λ} (incident)
- $a_{\lambda} + r_{\lambda} + \tau_{\lambda} = 1$

Greenhouse Effect

- Solar radiation essentially passes through to surface.
- Atmosphere absorbs some of IR emitted by the surface and emits it back.
- Surface must warm up even faster to emit enough radiation so that output can match the input
 - Radiative equilibrium

Atmospheric Absorption of Solar Radiation

- Absorption of parallel beam radiation is proportional to the number of molecules of gas along the path.
 - For now, we are going to ignore scattering of photons out of the beam.
- This can be expressed as: $da_{\lambda} = -dE_{\lambda} / E_{\lambda} = -K_{\lambda} \rho \sec \phi dz$
 - where:
 - da_{λ} is the absorption that occurs through the layer.
 - ρ is the density of the gas
 - sec φ dz is the path length (see online lecture)
 - $\rho \sec \phi dz$ is the mass per unit area for a small dz (think about units)
 - K_{λ} is the absorption coefficient of the gas [m²/kg]
 - How efficient the gas is as an absorber
 - Also called the absorption cross-section
 - K_{λ} is a function of the temperature of the gas, pressure, and composition of the gas.
- There are three ways to change the amount of absorption:
 - Change the density of the gas (more absorbers per unit area)
 - Change the path length
 - Change the absorption coefficient

Beer's Law and Transmissivity

 See in class lecture deriving Beer's law and how it relates to the transmissivity

• Beer's law is an equation for the cumulative absorption or how much of the radiation remains after passing through a given thickness of the atmosphere.

[From J. Appl. Meteor., 12, 376, (1973).]

Atmospheric Scattering of Solar Radiation

- ds_{λ} = Fraction of parallel beam radiation that is scattered when passing downward through a layer of infinitesimal thickness.
- This can be expressed as: $ds_{\lambda} = -dE_{\lambda} / E_{\lambda} = -K_{\lambda} N \sigma \sec \phi dz$
 - where:
 - ds_{λ} is the scattering that occurs through the layer.
 - N is the number of particles per unit volume of air (particle density).
 - sec ϕ dz is the path length (see online lecture).
 - σ scattering cross-sectional area of each particle.
 - K_{λ} is the scattering coefficient of the gas [m²/kg]
 - How efficient the gas is at scattering
 - K_{λ} is a function of the size parameter and the refractive index of the particles in the gas.
- There are four ways to change the amount of scattering:
 - Change the number of particles per unit volume.
 - · Change the path length.
 - Change the scattering coefficient.
 - Change the scattering cross-section of the particles.
- By following the approach we took with absorption, you can come up with an equation similar to Beer's law, but for scattering.

Scattering, x, and λ

x << 1 , K $_{\lambda}$ \propto x⁴, and K $_{\lambda}$ \propto λ -4

- For size parameters much less than 1, K $_{\lambda} \propto$ x^4 and K $_{\lambda} \propto$ $\; \lambda^{\text{--4}}$
- Rayleigh scattering of solar (shortwave) radiation.
- Scattered radiation is evenly divided between forward and back-scattered hemispheres.
- K $_{\lambda}$ (blue, λ = 0.47 um)/K $_{\lambda}$ (red, λ =0.64 um) = (0.64/0.47)⁴
- Short λ light is scattered more than long λ .
- Short λ is preferentially scattered.
 - Responsible for blue sky.
- Longer λ is more readily transmitted
 - Reddish or orange appearance of objects.
 - Especially around sunrise and sunset.
 - Path length through the atmosphere is long.

Scattering, x, and λ

Microwave Scattering

- Microwave scattering by raindrops also falls in the Rayleigh regime.
- For a given λ , $K_{\lambda} \propto x^4$.
- Sharp increase in K $_{\lambda}$ with increasing drop size.
- Makes it possible to discriminate between precipitation and cloud drops (radar).
- Why not use infrared radiation?

Doppler Radar Bands

S band

- 8-15 cm wavelength
- Not easily attenuated
- NWS radars 10 cm

C band

- 4-8 cm wavelength
- More easily attenuated
- Smaller dish sizes make them more affordable
- TV stations

X band

- 2.5-4 cm wavelength
- Easily attenuated, useful for short range observation
- Cloud development
- DOWs

K band

- 0.75-1.2 cm wavelength
- Similar to X band, but even more sensitive
- Shares space with police radars.

Scattering, x, and λ

x > 50, $K_{\lambda} \cong 2$

 Angular distribution of scattered radiation described by principles of geometric optics.

 Scattering of visible radiation by cloud droplets, rain drops, ice particles.

Rainbows, halos, etc.

0.1 < x < 50

- K_λ exhibits oscillatory behavior
- Angular distribution of radiation very complicated and varies rapidly with the size parameter.
- Forward scattering predominates over back scattering.
- Scattering of sunlight by smoke, smog, dust.

Scattering, x, and λ

Extinction

• Equations for scattering and absorption are very similar.

• In fact, they can be made to be identical with the following equation:

• $K_{\lambda}(Extinction) = K_{\lambda}(Scattering) + K_{\lambda}(Absorption)$

 This equation gives the combined effect of scattering and absorption in depleting the intensity of radiation passing through the layer.

