FORTRAN 90: Selective Execution

Meteorology 227
Fall 2015
Logical Expressions

• Can be simple or compound.

• (expression) (relational-operator) (expression)

• Relational Operators
 – < or .LT. Is less than
 – > or .GT. Is greater than
 – == or .EQ. Is equal to
 – <= or .LE. Is less than or equal to
 – >= or .GE. Is greater than or equal to
 – /= or .NE. Is not equal to

• Note:
 – == is a relational operator
 – = is an assignment statement

• Logical Expressions evaluate to .TRUE. Or .FALSE.
Examples

• $B^{**2} \geq 4.0 \times A \times C$
• $1.0 \leq 24.0$
• “A” < “F”
• “cat” < “dog”
• “cat” < “cow”
• “June” < “July”
• “cat” < “cattle”
Compound Logical Expressions

• Compound operators
 – .NOT. (negation)
 – .AND. (conjunction)
 – .OR. (disjunction)
 – .EQV. (equivalence)
 – .NEQV. (Non-equivalence)

• Order of operations
 1. Arithmetic operations
 2. Relational operators
 3. Logical operation in the order: .NOT., .AND., .OR., .EQV. (.NEQV.)

• Use Parentheses to remove any ambiguity.
Examples

• Let $N=4$

• $N^2 + 1 > 10 \land \neg N < 3$

• $(N^2 + 1 > 10) \land \neg (N < 3)$

• $\text{Data_Name} == \text{"RAIN_NON" \lor \text{"RAIN_CON"}}$
IF constructs

• Block IF construct
 – IF (logical-expression) THEN
 statement-sequence
 ENDIF
 – IF (Precip_Rate >= 0.50) THEN
 Accumulation = Precip_Rate * Time_Interval
 Print *, ‘It is raining cats and dogs!’
 ENDIF

• Logical IF statement
 – IF (logical-expression) statement
 – IF (Precip_Rate >= 0.50) Print *, ‘It is raining cats and dogs!’
General form

- Flowchart
- IF (logical-expression) THEN

 statement-sequence 1

ELSE

 statement-sequence 2

ENDIF

- IF ((Precip_Rate > 0.0).AND.(Temp < 32.0)) THEN

 Print *, ‘It is Snowing’

ELSE

 Print *, ‘It is Raining’

ENDIF
IF-ELSE IF constructs

• How would you do it now?
 – IF (logical-expression) THEN
 statement-sequence
 ELSE
 IF (logical-expression) THEN
 statement-sequence
 ELSE
 statement-sequence
 ENDIF
 ENDIF

• This method is somewhat tedious. FORTRAN helps you out a bit.
IF-ELSE IF cont.

- IF (logical-expression) THEN
 statement-sequence
ELSE IF (logical-expression) THEN
 statement-sequence
ELSE IF (logical-expression) THEN
 statement-sequence
ELSE
 statement-sequence
ENDIF
CASE construct

- Less general form of IF-ELSE IF construct, but still very useful.
- General Form
 - SELECT CASE (Selector)
 CASE (label-list-1)
 Statement-sequence 1
 CASE (label-list-2)
 Statement-sequence 2

 CASE (label-list-n)
 Statement-sequence n
 END SELECT
CASE cont.

- Selector: Integer, character, or logical expression

- Label-list: List of one or more possible values of the selector, enclosed in parentheses, or the word default.
 - Value
 - Value-1 : Value-2
 - Value-1 :
 - : Value-2

- If the value is not any of the lists of values, the sequence of statements associated with DEFAULT is executed.
Example 1 – Class Code

- SELECT CASE (ClassCode)
 CASE (1)
 Print *, ‘Freshman’
 CASE (2)
 Print *, ‘Sophomore’
 CASE (3)
 Print *, ‘Junior’
 CASE (4)
 Print *, ‘Senior’
 CASE (5)
 Print *, ‘Graduate’
 CASE DEFAULT
 Print *, ‘Illegal class code:’, ClassCode
END SELECT
Example 2 – Fujita Scale

- SELECT CASE (Wind_Speed)
 CASE (:72)
 Print *, 'F0'
 CASE (73:112)
 Print *, 'F1'
 CASE (113:157)
 Print *, 'F2'
 CASE (158:206)
 Print *, 'F3'
 CASE (207:260)
 Print *, 'F4'
 CASE (261:318)
 Print *, 'F5'
 CASE DEFAULT
 Print *, 'Finger of God'
END SELECT
LOGICAL Data Type

• Two logical constants in FORTRAN
 – .TRUE. And .FALSE.

• Logical variable
 – LOGICAL :: list
 – LOGICAL :: End_of_Data, RootExists

• Assignment Statement
 – RootExists = Discriminant >=0

• List output of a logical variable
 – Let A=True, B and C = False
 – Print *, A,B,C,.True,.False.
 – T_F_F_T_F

• Program example